CRYPTO

Part of Fox-IT

Producti

Frans van Dorsselae
Maximilian Fillinger, Pe
Niels M

Client Confidential

Contents

* Origin of this library

XMSS in a nutshell

Use cases

Requirements

Fault Resilience

Verification & Signing

« Guidance, Assurance, Evaluation

CRYPTO

Part of Fox-IT

XMSS (features)

* Public key signatures, PQ-safe @

« Extremely secure, only requires preimage resistance of hash function
(widely accepted; NIST, NLNCSA, ...)

* Predetermined maximum number of sighatures
(ranging from 1,000 to 1,000,000)

- Stateful
(private key needs to be updated when signing)

CRYPTO

Part of Fox-IT

XMSS (numbers)

Public key: < 100 bytes

Private key:
« Static: < 200 bytes
* Dynamic: < 100 bytes
« Cache (optional): up to a few megabytes

Signature: about 2 kiB

Key generation is slow: > 1 billion hashes

CRYPTO

Part of Fox-IT

Use cases - Firmware, Authenticity, ...

 Signing at manufacturer
(trusted environment, trusted equipment)

|METERUS|

S B :
- Verification in device =
(untrusted environment) E
[)8 o)
) Example S LT
- Automotive 4

 Smart meter

CRYPTO

Part of Fox-IT

Asymmetric requirements

* Signing:
- State storage
« Backup / load-balancing redundancy
- Bit error resilience

* Verification:
* Fast
« Small
* Fault injection resilience

CRYPTO

Part of Fox-IT

Bit error resilience

« Simple booleans are too naive
» Use Hamming(8,4), don’t use all Os or all 1s
* 8-bit helps platforms such as ARM (immediate addressing mode)

« Redundancy
 Perform critical operations multiple times and compare results
- Store values in multiple fields and compare pre- and post-operation

* Integrity
* Digest all critical data pre- and post-operation

CRYPTO

Part of Fox-IT

Fault injection resilience (verification only)

On top of bit error resilience: protect against power/clock glitching

Example attacks:
* (timed) instruction skipping at boot
* (timed) data manipulation at boot

CRYPTO

Part of Fox-IT

Hardware platform dependency (verification)

A generic software implementation can never provide fault injection resilience!

* The APl was designed to enable (facilitate) resilience,
at no cost for those that do not require fit.

« API supports all scenarios:
* Minimum size
« Maximum performance
« Maximum resilience

CRYPTO

Part of Fox-IT

Verification library

Design goals:

« Small
« Unused algorithm (SHA-2 or SHAKE) can be disabled at compile time
* Fast
« Even when verifying multiple times for resilience
* Pluggable
« Allow use of hardware accelerated hash implementation
Result:
xmss_calculate _expected_public_key
restrict expected_public_key
const restrict msg
const restrict pub_key
const restrict signature

CRYPTO

Part of Fox-IT

Verification example

« Raspberry Pi Pico microcontroller
« SHA-256 (SHAKE256/256 disabled)

- 1,800 bytes code
- < 2k RAM Rospberry Pl Pice @2020 B0OTSEL ...g

%!

:

CRYPTO

Part of Fox-IT

Signing (storage)

API| separates:

» Static part (small, stored once)

* Dynamic part (small, stored often)

 Public cache part (large, stored once, not required)

This allows Smartcard implementations, PCs, etc.

Storing is done before signing. Multiple signatures can be reserved.

CRYPTO

Part of Fox-IT

Signing (backup)

Contradiction:
* Long-term availability requires backups
- State must never be reused; implies no backups

API solution: partitioning (the RFC way, not the NIST way)

 Each partition can be sub-divided
« Consecutive partitions can be glued

Solves both backups and redundancy (active-active)

CRYPTO

Part of Fox-IT

Signing (key generation)

Random must be provided by user; the library is deterministic (requirement).

API supports generating the key in parts for:
- Easy progress monitoring
 Multithreading

Example: largest key on Intel i9: E2'minutes.
(on a smartcard probably > 1 day).

CRYPTO

Part of Fox-IT

Fox Crypto additional security feature

Standard XMSS leaks:
* Number of signatures generated
* Partition used

- Index obfuscation

Pseudo-random permutation (Fisher-Yates shuffle) of indices.

Fully compatible with standard XMSS, transparent for verification.

CRYPTO

Part of Fox-IT

Guidance

Library is available at https://github.com/FoxCryptoNL/xmss

Free (MIT license)

Includes guidance for:

- Resilience

» Storage

« Backups

- Hardware acceleration
 Public key pinning

CRYPTO

Part of Fox-IT

https://github.com/FoxCryptoNL/xmss

Guidance example

N’ CRYPTO XMSS Library
Qr Search

XMSS Library
Public key authentication
Signature verification
Public key obfuscation
Signature count hiding
Hash optimization
Secure boolean functions
Secure conditional branches
Classes

Files

Public key authentication

The public key needs to be authenticated before it can be trusted to verify signatures.

As a commaon scenario, we consider a manufacturer creating products that require
firmware updates at the site of the customer after production. Usually, the public key
is ‘authenticated’ by storing it, preferably irreversibly, in the product at manufacturing

time; for example:

PRODUCT

xmss_public_key_t | pinned_public_key | Stored at factory

I‘I -\I
.ul-n
verifies
.'I'\
(]
A
MESSAGE
xmss_signature_t | signature | Created at factory
bytes payload Data to be authenticated

Depending on the backup strategy, one could pin multiple public keys; for example:

CRYPTO

Part of Fox-IT

Assurance / Evaluation

Fox Crypto on premise:

+ Evaluation evidence: {afgets/Common Criteria’EALS

* To be published later:
* Test suite (already developed)
« Examples
* High level language wrappers

CRYPTO

Part of Fox-IT

Q&A

' CRYPTO

