

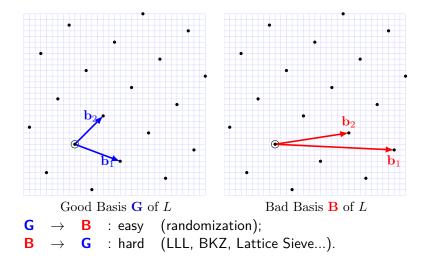
Léo Ducas

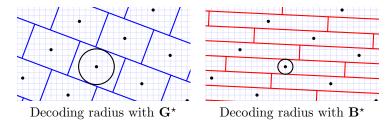
CENTRUM WISKUNDE & INFORMATICA, AMSTERDAM LEIDEN UNIVERSITY, MATHEMATICAL INSTITUTE

Symposium on Post-Quantum Cryptography, Episode 4, November 15, 2022

Cryptographic Suite for Algebraic Lattices (CRYSTALS)

https://pq-crystals.org/





Lattices, Bases, and Cryptography

Decryption = Error Correction

Bases allow to 'tile' the space and to decode errors

As dimension grows > 2, the error tolerance gap between ${\bf G}$ and ${\bf B}$ grows exponentially.

Lattice-Based Asymetric Cryptography

- secret key = good basis G
- public key = bas basis B

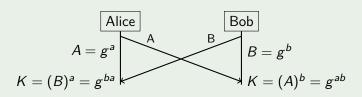
Lattice-based Crypto is as simple as Tetris

Cryptris:

A serious game to understand how it works, and why it is secure.

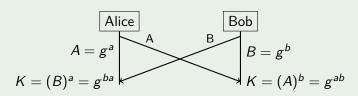
Developed with Inria (FR), translated to EN and NL at CWI https://cryptris.nl/

- Same foundations: module-lattices ⇒ less risk
 Less structure than ideal-lattices but still efficient
- Similar arithmetic: $\mathbb{Z}_q[X]/(X^{256}+1)$ \Rightarrow less code $q_{\text{Kyber}}=3329, q_{\text{Dilithium}}=8380417$ for all security levels
- Simple distributions ⇒ no Floating-Points uniforms, small binomial. **No Gaussians**
- Balanced performance

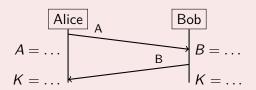

Many implementation available

for learning and testing

- https://pq-crystals.org/
- https://github.com/PQClean/PQClean
- https://thelatticeclub.com/
- https://github.com/mupq/pqm4/blob/master/benchmarks.md


A Migration Challenge: Interactivity in Key-Exchange

DH & ECDH are non-interactive It doesn't matter who speaks first



A Migration Challenge: Interactivity in Key-Exchange

DH & ECDH are non-interactive It doesn't matter who speaks first

Kyber is interactive

- the migration may require more than drop-in replacement
- the rest is only a matter of performances

Parameter Sets

Security Target	Key-Exchange	Signature
NIST level 1	Kyber-512	
NIST level 2		Dilithium-2
NIST level 3	Kyber-768	Dilithium-3
NIST level 4		
NIST level 5	Kyber-1024	Dilithium-5

Using Kyber-512?

- Ignoring cost of RAM, Kyber-512 security is borderline
- Attacks and cost estimates are still being refined
- NIST may decide to not standardize Kyber-512 right away
- Kyber-768 was and remain our recommendation

Performances

- Computation speed is not an issue worst operation is a fraction of milli-second on x86-Haswell
- Key and ciphertext sizes are larger than pre-quantum but nothing is particularly huge

Kyber-512

Sizes (bytes)	Cycles (ref)	Cycles (avx2)
sk: 2400	gen: 199k	gen: 52k
pk: 1184	enc: 235k	enc: 68k
ct: 1088	dec: 274k	dec: 53k

Dilithium-2

Sizes (bytes)	Cycles (ref)	Cycles (avx2)
	gen: 300k	gen: 124k
pk: 1312	sign: 1.3M	sign: 333k
sig: 2420	verif: 327k	verif: 118k

Profiling (on x86-Haswell)

SHAKE (SHA-3 Hash with Extended Output)

 $\approx 80\%$

Hardware acceleration expected in future CPUs

Number Theoretic Transform for $\mathbb{Z}_q[X]/(X^{256}+1)$

 $\approx 4\%$

■ No alternative polynomial multiplication in current spec.

Karatsuba, Toom-Cook

Miscellaneous

pprox 15%

■ Sampling mod q, Arithmetic mod q, roundings $x \mapsto \lfloor \frac{p}{q} \cdot x \rceil$

Profile is similar on smaller architecture¹

¹e.g. m4 https://github.com/mupq/pqm4/blob/master/benchmarks.md

Summary

- Interactivity in KEM is the main challenge for migration the rest is a matter of performances
- Kyber & Dilithium form a coherent suite with balanced perf.
- Kyber & Dilithium selected as primary algorithms
 NIST recommends them for most use cases
- No major update to be expected Test with Round 3 version, wait standard to deploy
- Consider Kyber-768 when preparing migration
 Kyber-512 may be delayed for standardization